
- -  N A S A  TECHNICAL NOTE NASA TN D-8358 

i' 

ABLATIVE PERFORMANCE OF UNCOATED 
SILICONE-MODIFIED A N D  SHUTTLE BASELINE 
REINFORCED CARBON COMPOSITES 

Dennis L. Dicus, Russell N.Hopko, 
b dnd Rondld D. Brown 

Lungley Research Center 
Humpton, Vu. 23665 $&)Q 

Y

'5
% 

"76 -1916 

N A T I O N A L  AERONAUTICS AND SPACE A D M I N I S T R A T I O N  . W A S H I N G T O N ,  D. C. DECEMBER 1976 



TECH LIBRARY KAFB, NM 

I1ll111llll1lllllll/ll11ll1I II1IllII 
023411b 

. ...-
1. 	 Report No. 2. Government Accession NO. 3. Recipient's Catalog No. 

NASA T N  D-8358 I
4. Title and Subtitle 5. Repon Date 

ABLATIVE PERFORMANCE OF UNCOATED December 1976 
SILICONE-MODIFIED AND SHUTTLE BASELINE 6. Performing Organization Code 
REINFORCED CARBON COMPOSITES 

7 Authorls) 8. Performing Organization Report No.I L-11095Dennis L. Dicus, Russel l  N. Hopko, and Ronald D. Brown 
- - . .  . 

9. Performing Organization Name and Address 

NASA Langley Research Center 
Hampton, VA 23665 

-
2. Sponsoring Agency Name and Address 

National Aeronautics and Space Administration 
Washington, DC 20546 
.___ ..~ 

5. Supplementary Notes 

- -
I6 Abstract 

-1 1 ,  L n t r a c t  or Grant NO. 

I 
13. Type of Report and Period Covered 

Technical Note 

-

An investigation has  been made of the relative ablative performance of uncoated 
silicone-modified reinforced carbon composite (RCC) and uncoated shuttle baseline 
RCC substrates .  The tes t  specimens were  13 plies (5.3 to  5.8 mil l imeters)  thick and had 
a 25-millimeter-diameter tes t  face. P r io r  to arc-tunnel testing, a l l  specimens were  sub
jected to  a heat t reatment  simulating the RCC coating process .  During arc-tunnel testing, 
the specimens were  exposed to  cold-wall heating r a t e s  of 178 to  529 kilowatts/meter2 
and stagnation p res su res  ranging from 0.015 to  0.046 atmosphere at Mach 4.6 in air, with 
and without preheating in nitrogen. The resu l t s  show that the ablative performance of 
uncoated silicone-modified RCC subs t ra tes  is significantly superior  to  that of uncoated 
shuttle baseline RCC subs t ra tes  over the range of heating conditions used. These r e su l t s  
indicate that the silicone-modified RCC substrate  would yield a substantially grea te r  
safety margin in the event of complete coating loss  on the shuttle orbiter. 

- ~ . ~
17. Key-Words (Suggested by Authoris)) 

Carbon-carbon composite
Space shuttle 
Arc-tunnel testing
Oxidation res i s tance  
Silicone-phenolic r e s in  

_- - _ _ _ _ _ ~ _ _  

. .. ~ .~-.I 18. Distribution Statement 

Unclassified - Unlimited 

Subject Category 34 
I 

19. Security Classif. (of this report) 20. Security Classif. (of this page) P a i s  -1  22. 

Unclassified Unclassified 

* F o r  sale by the National Technical  Information Service. Springfield, Virginia 22161 

!
g!, 



ABLATIVE PERFORMANCE OF UNCOATED SILICONE-MODIFIED AND 

SHUTTLE BASELINE REINFORCED CARBON COMPOSITES 

Dennis L. Dicus, Russell N. Hopko, and Ronald D. Brown 
Langley Research Center 

SUMMARY 

An investigation has been made of the relative ablative performance of uncoated 
silicone-modified reinforced carbon composite (RCC) and uncoated shuttle baseline 
RCC substrates. The test specimens were 13 plies (5.3 to 5.8 millimeters) thick and had 
a 25-millimeter-diameter test  face. Pr ior  to arc-tunnel testing, a l l  specimens were sub
jected to a heat treatment simulating the RCC coating process. During arc-tunnel testing, 
the specimens were exposed to cold-wall heating rates of 178 to 529 kilowatts/meter2. 
and stagnation pressures  ranging from 0.015 to  0.046 atmosphere at Mach 4.6 in air, with 
and without preheating in nitrogen. The results show that the ablative performance of 
uncoated silicone-modified RCC substrates is significantly superior to that of uncoated 
shuttle baseline RCC substrates over the range of heating conditions used. These resul ts  
indicate that the silicone -modified RCC substrate would yield a substantially greater 
safety margin in the event of complete coating loss on the shuttle orbiter. 

INTRODUCTION 

A silicon carbide-coated carbon-carbon composite, generally known as reinforced 
carbon composite (RCC), will be employed a s  the heat shield for the wing leading edge of 
the space shuttle orbiter. (See ref. 1.) These composites are manufactured by multiple 
impregnation of a carbon cloth with a carbon bearing resin. The silicon carbide coating 
is produced by thermally diffusing silicon into the outer layers and converting it to silicon 
carbide by reaction with the carbon in the host matrix. (See refs. 1and 2.) 

The current shuttle baseline RCC employs a polyfurfuryl alcohol (PFA) a s  the 
densifying &pregnant. In the uncoated condition, this material  has been shown to oxidize 
readily. (See refs. 3 and 4.) Also, arc-tunnel tests of coated shuttle baseline RCC have 
shown that substantial subsurface oxidation occurs because of cracking o r  crazing of the 
siliconized outer layer. (See refs. 5 to 8.) Thus, if the siliconized layer were damaged 
or  lost in an actual flight, the substrate could ablate rapidly, perhaps causing a heat-shield 
failure. 
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Under NASA contract, Los Alamos Scientific Laboratory (LASL) undertook a pre
liminary investigation of methods to improve the oxidation resistance of the uncoated 
RCC substrate. In that study, thermogravimetric analysis up to 1020 K showed that the 
oxidation resistance of uncoated RCC substrates could be increased by as much as 60 per
cent by substituting a phenolic res in  containing a silicone for the normally used PFA 
(ref. 9). The present study was undertaken to compare the ablative performance of 
uncoated silicone-modified RCC to that of uncoated shuttle baseline (PFA impregnated) 
RCC at surface temperatures and flow conditions representative of shuttle-orbiter reentry. 

SYMBOLS 

D diameter, m 

HO 
stagnation enthalpy, J /kg  

"S 
mass-loss ra te  per  unit surface area, g/m2-s 

PO stagnation pressure, atm (1 atm = 101.3 kPa) 

convective cold-wall stagnation heat -transfer rate, W/m 2 
qcw 

T temperature, K 

E emittance 

7 time, s 

MATERIALS AND SPECIMENS 

The manufacture of RCC begins with a prepregged graphite cloth which is laid up, 
molded, cured, and pyrolyzed. At this stage, the material is designated RCC-0. After 
three subsequent impregnation and pyrolysis cycles, the material is designated RCC-3. 
A detailed description of the fabrication process may be found in reference 1. 

Samples of RCC-0 in the form of 13-ply (approximately 5.3- to 5.8-mm) thick ba r s  , 
about 150 mm long and 25 mm wide were supplied by Vought Corporation to LASL. These 
samples were processed through three impregnation-pyrolysis cycles as follows: The 
bars  were impregnated with a silicone-phenolic resin at 343 K in nitrogen at 1.4-MPa 
pressure, cured h a i r  up to 473 K over 71 hours, and pyrolyzed for 136.5 hours up 
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to 1175 K in 1-atm argon. The silicone-phenolic res in  had been stripped of its solvent, 
isopropyl alcohol, prior to impregnation of the samples. 

Arc-tunnel test  specimens were machined from these bars  to the configuration 
shown in figure l(a). Arc-tunnel specimens of shuttle baseline material (RCC-3) in the 
configuration shown in figure l(b) were supplied by Vought Corporation. The difference 
in specimen configurations was  due to the inadequate width of the RCC-0 samples supplied 
to LASL. However, all specimens had a nominal 25-mm-diameter tes t  face and had the 
same nominal 13-ply thickness. 

. 
After machining, all specimens were subjected to a final heat treatment (pyrolysis)* 

in helium for 12 hours including approximately 3 hours at the maximum temperature, 
2000 K. The purpose of this heat treatment w a s  to simulate the thermal effect of the 
silicon carbide coating process used on RCC. (See ref. 1.) 

For a r c  -tunnel exposures, the specimens were contained in a silicon carbide-coated 
bulk graphite holder shown in figure 2. Previous studies had shown that a very nearly 
uniform heating rate  could be maintained across  the specimen area  by using a holder of 
this configuration. 

APPARATUS AND TEST ENVIRONMENTS 

The tests were conducted in a supersonic arc-heated tunnel, which is described in 
reference 10. For the present study, the apparatus w a s  equipped with a conical nozzle 
having a 7-cm-diameter throat and a 22.9-cm-diameter exit. A radiometer operating in 
the 2.0- to 2.6-pm-wavelength region was  used to monitor test-specimen surface tem
perature. The radiometer had been calibrated using the same geometry, window, and 
mir rors  employed in the actual tests. 

Two types of tests were conducted in this study. One type employed air as the test  
medium throughout the entire test. A second type employed nitrogen as the test medium 
to preheat the specimens without oxidation before converting the tes t  medium to  air for  
the duration of the test. The purpose of eliminating oxidation during the initial transient-
heating portion of the tes ts  w a s  to provide a better correlation between mass-loss ra te  

i. and specimen surface temperature. 

I During arc-tunnel testing, the specimens were exposed to  cold-wall heating rates 
of 178 to 529 kW/m2 and stagnation pressures  ranging from 0.015 to 0.046 atm at 
Mach 4.6 in air. Specimen test conditions are given in detail in table I. 
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PROCEDURES 

Prior  to the tests, the desired flow conditions were determined and calibrated with 
respect to stagnation-point heat-transfer rate, stagnation pressure, power input to the 
a r c  heater, and tunnel mass-flow rate. The enthalpy values shown in table I were com
puted using the heat transfer and pressure measurements obtained in air after each test. 

Tests in Air I 

After the a rc  tunnel was  started, time w a s  allowed for the flow conditions to stabi
3lize. Heating rate  and stagnation pressure were measured with a hemispherical calo

rimeter and a pitot probe, respectively. The specimen w a s  then inserted into the test 
stream with the test  face normal to the flow. Upon removal of the specimen from the 
stream, heating rate  and stagnation pressure were measured again. The posttest mea
surements were used as the actual tes t  conditions. 

Tests in Air With Nitrogen Preheating 

The tunnel was  started, the flow was  stabilized, and the flow conditions were mea
sured in a nitrogen test  stream. The a r c  heater was  operated at the previously calibrated 
a rc  current, and the nitrogen flow rate was  adjusted to give the desired a rc  chamber pres
sure. The preheat times were selected to allow the model surface temperature to 
approach that expected for the air portion of the test. The test medium was changed 
from 100-percent N2 to 100-percent air with the transient effects lasting approximately 
4 seconds. Flow conditions were again measured after the specimen was  removed from 
the test  stream, and these measurements were used as the actual test conditions. 

Mass -Loss Determination 

Mass loss was determined by weighing the specimens before and after arc-tunnel 
testing. Prior to initial weighings, the specimens were kept at room temperature in a 
dry storage cabinet containing a desiccant. After a r c  -tunnel exposure, specimens were 
allowed to cool to room temperature and were  then weighed. 

RESULTS AND DISCUSSION 

Parallel arc-tunnel exposures were performed on uncoated specimens of silicone-
modified and shuttle baseline RCC at a wide range of heating conditions representative of 
shuttle-orbiter reentry. Half of these tes ts  were conducted completely in air, and half 
were conducted in air following a preheat period in nitrogen. 
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The relative ablative performance of the two materials was evaluated on mass  -loss 
rate per  unit surface area determined from initial front surface area and mass measure
ments before and after arc-tunnel exposure. The mass-loss rate per  unit area, exposure 
time, and surface temperature experienced by each specimen are shown in table 11. 

The emittance of all specimens was assumed to  be 0.8 in the 2.0- to  2.6-pm
wavelength band and to  be independent of temperature. Preexposure room -temperature, 
spectral  reflectance measurements made on several  specimens of each material showed 

k 
their emittance in this wavelength band to  lie within the 0.7 to 0.9 range, which is gen
erally accepted for this class of materials. 

Representative surface-temperature histories fo r  specimens tested with and without 
nitrogen preheating are shown in figures 3 and 4, respectively. The reason for  the pro
nounced difference in the surface-temperature-rise ra tes  of the two materials in the 
transient portion of the tests is not known. In figure 3, the rapid increase in temperature 
when the s t ream w a s  converted from nitrogen to air is apparent, As can be seen in 
figures 3 and 4, the specimens tended to reach a quasi-steady surface-temperature con
dition before the completion of the test. The temperature.of the silicone-modified speci
mens tended to  oscillate throughout the later portion of the higher heating-rate tests. 
The surface temperatures reported in table I1 and used in following figures are repre
sentative of the quasi-steady portion of the tests. 

Figure 5 shows mass-loss rate as a function of temperature for both materials 
tested. The significantly lower mass loss experienced by the silicone -modified RCC, 
ranging from 20 percent at 1300 K to 70 percent at 1700 K of the mass loss experienced 
by the shuttle baseline RCC, is evident. Nitrogen preheating did not have any apparent 
effect on the mass-loss ra tes  of either material. 

The mass-loss data have been normalized with respect to p
0
'I2,where p

0 
is the 

stagnation pressure, and plotted as a function of temperature in figure 6. Although there 
is some uncertainty about the precise value of the exponent of pressure, a wide range of 
values between zero and one having been reported in the literature, a value of 1/2 has wide 
acceptance. (See ref. 11.) Including the effect of pressure, the superiority of the 
silicone-modified RCC is still evident, with its mass -loss rate ranging from one-quarter 

4- to three-quarters that of the shuttle baseline material at temperatures from 1300I 
to  1700 K. However, figure 6 clearly shows that, at the higher temperatures, the per

i 	 formance of the two materials is approaching parity. Extrapolation indicates that parity 
should occur near 1800 K, the lower boundary of the diffusion-controlled oxidation regime 
for carbon. (See refs. 11 and 12.) 

A comparison of the mass-loss rates of the two materials at each test condition is 
given in figure 7. The performance of the silicone-modified RCC is clearly superior to 
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that of the shuttle baseline RCC at every combination of heating rate  and stagnation 
pressure. These results indicate that the silicone-modified RCC substrate would yield 
a substantially greater safety margin than the shuttle baseline RCC substrate in the 
event of complete coating loss on the shuttle orbiter. The results also indicate that, 
coupled with an equivalent coating, the subsurface oxidation of coated RCC could be sig
nificantly reduced by the substitution of a silicone-phenolic res in  as the densifying 
impregnant in the manufacture of RCC substrates for the shuttle orbiter. 

I’ 
Photographs of typical specimens of shuttle baseline and silicone -modified RCC 

after testing a r e  shown in figures 8 and 9. No unusual features a r e  apparent in the post-
test photograph of the shuttle baseline RCC (fig. 8(b)). However, the posttest photograph 
of the silicone-modified RCC shows a new, widely dispersed, white phase (fig. 9(b)). 
Figure 9(c) is a larger magnification scanning electron microscope (SEM) photograph of 
the specimen surface. This new phase is apparently a reaction product formed by the 
silicon from the impregnating resin. Energy dispersive X-ray analysis shows these 
white a reas  to be very rich in silicon; but because distinct X-ray diffraction patterns 
were not found, specific identification of the product as either Sic, S i 0 3  o r  some mix
ture of these could not be obtained. 

Figure 10 shows posttest photographs of several other specimens of silicone-
modified RCC. The specimens exposed to relatively low heating rates  show a light, 
widely distributed, powdery residue of reaction product on the surface. The specimens 
exposed to much higher heating rates, however, show a very heavy residue concentrated 
at isolated locations on the specimen surface. The heavy residue buildup around the 
periphery is attributed to air leakage between the specimen and the holder. 

The reaction product is very friable, and only slight agitation was  necessary to 
separate it from the specimen surface. Owing to the appearance of isolated islands of 
residue on the surface of the specimens exposed to the higher heating rates  and the 
oscillating surface temperature in the later part of the higher heating-rate a r c  -tunnel 
runs (see figs. 3 and 4), an alternating growth and spallation of the reaction product on 
the specimen surface a r e  postulated. 

Such a mechanism for removal of the reaction product from the specimen surface, 
whether due to thermal expansion mismatch, aerodynamic shear, or otherwise, is also 
compatible with the trend for the mass-loss ra tes  of the two materials to approach 
parity. As the heating conditions become more severe, the rapid, alternating removal 
of the protective reaction-product sheath would result in f resh unreacted surface being 
exposed. Because the amount of silicon present in the carbon matrix is quite small, the 
reduction in mass-loss rate afforded by it should be almost insignificant in the diffusion-
controlled regime. 
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CONCLUDING REMARKS 

An investigation has been made of the relative ablative performance of uncoated 
silicone-modified reinforced carbon composite (RCC) and uncoated shuttle baseline RCC 
substrates. Specimens of each material were tested in an a r c  tunnel at cold-wall heating 
rates of 178 to  529 kilowatts/meter2 and stagnation pressures  of 0.015 to  0.046 atmo
sphere. The performance of the two materials was compared on the basis of mass-loss 

4 	 rate per unit surface area. Prior  to  testing, all specimens had been subjected to  a heat 
treatment simulating the silicon carbide coating process used on RCC for  space-shuttle 

f application. 

The performance of the silicone-modified RCC is clearly superior to that of the 

I 	 shuttle baseline RCC at every combination of heating rate and stagnation pressure. Nor
malized with respect to  stagnation pressure, the mass-loss rate of the silicone-modified 
RCC is only one-quarter that of the shuttle baseline RCC at 1300 K to three-quarters 
at 1700 K. The results also indicate that the ablative performance of the two materials 
should approach parity near 1800 K. 

The lower mass-loss rate of the silicone-modified RCC is apparently due to  the 
formation of a silicon reaction product during heating in air. Indications are that at 
higher heating rates, the reaction product intermittently spalls, exposing fresh unreacted 
surface. Such a mechanism supports the conclusion that the mass-loss rates of the two 
materials would approach parity in the diffusion-controlled oxidation regime. 

On the basis of these results, the silicone-modified material would appear t o  offer 
a substantially greater safety margin in the event of complete coating loss on the shuttle 
orbiter. The results also strongly suggest that coupled with an equivalent coating, the 
subsurface oxidation of coated RCC could be significantly reduced by substitution of a 
silicone-phenolic res in  as the densifying impregnant in the manufacture of RCC substrates 
for  the shuttle orbiter. 

Langley Research Center 
National Aeronautics and Space Administration 

f-
Hampton, VA 23665 
October 28, 1976 

i 

7 


Il! 




REFERENCES 
1, 

1. Rogers, D. C.; Seeger, J. W.; and Shuford, D. M.: Oxidation Resistant Carbon-
Carbon Composite for  Space Shuttle Application. New Horizons in Materials and 
Processing, Volume 16 of National SAMPE Symposium and Exhibition, SOC.Advance. 
Mater. & Process. Eng., c.1973, pp. 202-216. 

2. Pavlosky, James E.; and St. Leger, Leslie G.: Oxidation Protected Carbon-Carbon. 
11NASA Space Shuttle Technology Conference - Dynamics and Aeroelasticity; Struc

tures and Materials, NASA TM X-2570, 1972, pp. 335-372. 
1

3. 	Medford, J. E.: Multi-Cycle Plasma Arc Evaluation of Oxidation Inhibited Carbon-
Carbon Material for Shuttle Leading Edges. ASME Paper 72-ENAv-26, Aug. 1972. 

4. 	 Forcht, B. A.; Medford, J. E.; and Pavlosky, J.: Development of an Oxidation Resist
ant Carbon-Carbon System for Space Shuttle Components. AIAA Paper No. 71-446, 
Apr. 1971. 

5. 	 Medford, J. E.: Prediction of Oxidation Performance of Reinforced Carbon-Carbon 
Material for Space Shuttle Leading Edges. AIAA Paper No. 75-730, May 1975. 

6. 	McGinnis, F. K.: Shuttle LESS Subsurface Attack Investigation - Final Report. 
Rep. No. 221RP00241 (Contract No. P.D. M3J3XMA-483013), Vought Syst. Div., 
LTV Aerospace Corp., Dec. 1974. 

7. 	 Development of a Fail Safe Design Oxidation Resistant Reinforced Carbon System for 
the Wing Leading Edge of a Space Shuttle Vehicle - Phase 111Final Report. Vol
ume I: Executive Summary. VSD Rep. No. T143 -5R-30008 (Contract NAS9-12763), 
LTV Aerospace Corp., [1973]. (Available as NASA CR-134139.) 

8. 	Development of a Fail Safe Design Oxidation Resistant Reinforced Carbon System for 
the Wing Leading Edge of a Space Shuttle Vehicle - Phase III Final Report. Vol
ume 11: Technical. VSD Rep. No. T143-5R-30008 (Contract NAS9-12763), LTV 
Aerospace Corp., [1973] . (Available as NASA CR-134120.) 

9. Williams, J. M.; and Imprescia, R. J.: Improvement in Oxidation Resistance of the 
Leading Edge Thermal Protection for  a Space Shuttle. J. Spacecr. & Rockets, 
vol. 12, no. 3, Mar. 1975, pp. 151-154. t 

10. Brown, Ronald D.; and Jakubowski, Antoni K.: Heat-Transfer and Pressure  Distribu- 1
tions for Laminar Separated Flows Downstream of Rearward-Facing Steps With and 
Without Mass Suction. NASA T N  D-7430, 1974. 

8 




11. Scala, Sinclaire M.: The Ablation of Graphite in Dissociated Air. Pt. I: Theory. 
Tech. Inform. Ser. No. R62SD72, Missile Space Div., Gen. Elec. Co., Sept. 1962. 

12. Clark, Ronald K.: An Analysis of a Charring Ablator With Thermal Nonequilibrium, 
Chemical Kinetics, and Mass Transfer. NASA TN D-7180,1973. 

9 




TABLE I.- SPECIMEN TEST ENVIRONMENTS 

Specimen no. Material Nitrogen
preheat 

qcw, 
kW/m2 Pd 

atm 

(b) 

A-100 -3 
A-100 -1 
A-100 -2 
A-100 -4 

No

I 
178 
236 
293 
506 

0.020 
.021 
.042 
.024 

A-100 -8 
A-100 -5 
A-100 -7 
A-100 -6 

YesI 197 
236 
511 
524 

.015 

.022 

.046 

.024 
LA-2 -3 
LA-2 -1 
LA-2 -2 
LA -2 -4 

NoI 192 
246 
293 
506 

.021 

.022 

.043 

.024 
LA-7-4 
LA-7-1 
LA-7-3 
LA-7-2 

YesI 202 
242 
499 
529 

.015 

.022 

.043 

.024 

*\ 

3.44 
4.36 
3.88 
8.46 
4.30 
4.25 
6.28 
8.79 
3.65 
4.51 
3.84 
8.46 
4.39 
4.39 
6.32 
8.88 

“STD is shuttle baseline (polyfurfuryl alcohol impregnated) RCC substrate. 

bCalculated from heat-transfer ra te  on hemispherical calorimeter. 

‘MOD is silicone -phenolic resin impregnated RCC substrate. ,, 
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TABLE 11.- TEST RESULTS 


-
~ 

Air 
Specimen,no. Nitrogen

preheat 
exposure

time, 
S 

A-100-3 
A-100-1 
A-100 -2 
A-100 -4 

No

I 
300 
300 
240 
240 

A-100 -8 
A-100 -5 
A-100-7 
A-100-6 

YesI 300 
180 
180 
240 

LA-2 -3 
LA-2 -1 
LA-2 -2 
LA-2 -4 

NoI 300 
300 
240 
240 

LA-7-4 
LA-7-1 
LA-7-3 
LA-7-2 

YesI 300 
180 
180 
240 

Surface Mass -
temperature, loss 

K rate, 
g/m2-s 

1284 1.46 
1412 2.89 
1459 3.00 
1727 7.22 
1321 1.92 
1469 2.88 
1637 8.62 
1741 7.97 
1286 .44 
1444 .78 
1459 .99 
1686 3.95 
1326 .30 
1449 1.09 
1621 5.48 
1713 5.43 

"STD is shuttle baseline (polyfurfuryl alcohol impregnated) RCC substrate. 
bMOD is silicone-phenolic resin impregnated RCC substrate. 
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25-mm D 5-mm D 


1.6 mm 

13 p l i e s  t6" 13 p l i e s
(5.3 to 5.8 mm) 3-+----=f 

(a) Silicone-modified RCC specimen configuration. (b) Shuttle baseline RCC specimen configuration. 

Figure 1.- RCC specimen configurations for arc-tunnel tests. 



L-76-284 
(a) Top view. 

Tes t  

s pe cimen 4-mm r a d  


Ceramic 

s p a c e r  \ 


Graphite 
ho lde r  

(b) Cross  -section side view. 

Figure 2.- Specimen holder �or arc-tunnel tests. 
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Figure 3. - Typical surface-temperature history for specimens tested with nitrogen preheat. 
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Figure 4. ,..Typical surface-temperature history for specimen tested in air only. 
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Figure 5.- Mass loss of RCC as function of surface temperature. 
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Figure 6.- Normalized mass loss of RCC as function of surface temperature. 
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Figure 7. - RCC mass-loss comparison summary. 
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(a)Before testing. 

(b) After testing. 
L-76-285 

Figure 8.- Shuttle baseline RCC before and after testing. 



( : I )  Before testing. 

(e> SFM photograph of surface dtar testing. 
L-'96-286

Figure 9. - Silicone-modified RCC bef~reand after testing. 
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(a) iCw= 192 kW/m2; p, = 0.021 a h .  (b) Gcw = 202 kW/m2; p, = 0.015 atm. 
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(c) icw= 506 kW/m2; p, = 0.024 atm. (d) GCw = 499 kW/m2; p, = 0.043 atm. 
L- 76-28 7

Figure 10. - Silicone-modified RCC after testing. 
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